15,582 research outputs found

    Evolution of binary stars and its implications for evolutionary population synthesis

    Full text link
    Most stars are members of binaries, and the evolution of a star in a close binary system differs from that of an ioslated star due to the proximity of its companion star. The components in a binary system interact in many ways and binary evolution leads to the formation of many peculiar stars, including blue stragglers and hot subdwarfs. We will discuss binary evolution and the formation of blue stragglers and hot subdwarfs, and show that those hot objects are important in the study of evolutionary population synthesis (EPS), and conclude that binary interactions should be included in the study of EPS. Indeed, binary interactions make a stellar population younger (hotter), and the far-ultraviolet (UV) excess in elliptical galaxies is shown to be most likely resulted from binary interactions. This has major implications for understanding the evolution of the far-UV excess and elliptical galaxies in general. In particular, it implies that the far-UV excess is not a sign of age, as had been postulated prviously and predicts that it should not be strongly dependent on the metallicity of the population, but exists universally from dwarf ellipticals to giant ellipticals.Comment: Oral talk on IAUS 262, Brazi

    Light Hadron Spectroscopy and Decay at BESIII

    Full text link
    Light hadron spectroscopy plays an important role in understanding the decay dynamics of unconventional hadronic states, such as strangeonium and glueballs. BESIII provides an ideal avenue to search for these exotic states thanks to a huge amount of data recorded at various energy points in the tau-charm mass region including J/psi resonance. This report summarizes recent results of the BESIII experiment related to the glueballs and strangeonium-like states.Comment: 6 pages, 5 figures, Conference proceeding of FPCP-201

    Symmetric Versus Nonsymmetric Structure of the Phosphorus Vacancy on InP(110)

    Full text link
    The atomic and electronic structure of positively charged P vacancies on InP(110) surfaces is determined by combining scanning tunneling microscopy, photoelectron spectroscopy, and density-functional theory calculations. The vacancy exhibits a nonsymmetric rebonded atomic configuration with a charge transfer level 0.75+-0.1 eV above the valence band maximum. The scanning tunneling microscopy (STM) images show only a time average of two degenerate geometries, due to a thermal flip motion between the mirror configurations. This leads to an apparently symmetric STM image, although the ground state atomic structure is nonsymmetric.Comment: 5 pages including 3 figures. related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
    • 

    corecore